arXiv:2302.06670v4 Announce Type: replace-cross Abstract: Anomaly detection and localization in visual data, including images and videos, are crucial in machine learning and real-world applications. Despite rapid advancements in visual anomaly detection (VAD), interpreting these often black-box models and explaining why specific instances are flagged as anomalous remains challenging. This paper provides the first comprehensive survey focused specifically on explainable 2D visual anomaly detection (X-VAD), covering methods for both images (IAD) and videos (VAD). We first introduce the background of IAD and VAD. Then, as the core contribution, we present a thorough literature review of explainable methods, categorized by their underlying techniques (e.g., attention-based, generative model-based, reasoning-based, foundation model-based). We analyze the commonalities and differences in applying these methods across image and video modalities, highlighting modality-specific challenges and opportunities for explainability. Additionally, we summarize relevant datasets and evaluation metrics, discussing both standard performance metrics and emerging approaches for assessing explanation quality (e.g., faithfulness, stability). Finally, we discuss promising future directions and open problems, including quantifying explanation quality, explaining diverse AD paradigms (SSL, zero-shot), enhancing context-awareness, leveraging foundation models responsibly, and addressing real-world constraints like efficiency and robustness. A curated collection of related resources is available at https://github.com/wyzjack/Awesome-XAD.
