36kr 2024年08月12日
AI美女全军覆没,赛博照妖镜下集体变“鬼”,AI代码拆台AI生图
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

随着AI技术的飞速发展,AI生成的人像已经逼真到难以辨认。本文介绍了如何通过观察图像细节、分析文字内容、以及利用图像处理技术等方法来识别AI生成的人像。文章还探讨了AI造假和AI检测之间的博弈过程,以及未来可能出现的AI生成图像检测方法。

🤔 **图像细节分析**:AI生成的图像往往存在一些与现实世界不符的细节,例如皮肤过于光滑、物体连接方式不合理、文字渲染错误等。例如,文章中提到的AI生成图片,其人物胸牌挂钩连接方式奇特,麦克风细节也不自然,以及头发末端毛发位置不合理等,都暴露了AI生成的特点。

🕵️ **图像处理技术**:通过对图像进行处理,例如拉高饱和度,可以更容易地识别AI生成的人像。因为AI生成的图像在高饱和度模式下,其牙齿边界模糊、色块不均匀等问题会更加明显。

💡 **AI检测模型**:为了应对不断进步的AI生成技术,人们开始使用AI生成的图片训练检测模型,从图像中分析更多特征,例如频谱、噪声分布等,来识别AI生成的图像。

🔐 **模型开发者责任**:除了检测方法之外,模型开发者也需要负起一些责任,例如给AI生成的图片打上隐形水印,来防止AI造假。

赛博照妖镜下,AI美女全变鬼。

来看它的牙

把图像饱和度拉满,AI人像的牙齿就会变得非常诡异,边界模糊不清。

整体图片的颜色也正常,麦克风部分更是奇怪。

对比真实人类照片,则应该是这样的。

牙齿是清晰的,图片色块都是均匀一致的。

这个工具已经开放,人人都能拿着照片去试试。

AI生成视频中的某一帧,也难逃此大法。

不漏牙的照片也会暴露问题。

不过BTW,这个工具出自Claude之手。用AI破解AI,奇妙的闭环。

有一说一,最近AI人像太逼真又引发了不小讨论,比如一组大火的“TED演讲者视频”,其实没有一个是真人。

不只是人脸难以区分,就连之前AI的短板——写字,现在都能完全以假乱真。

更关键的是,生成这样的AI人像,成本也不高。低至5分钟、每20秒1.5美元(人民币10块左右)的价格即可搞定。

这下网友们都坐不住了,纷纷搞起AI打假大赛。

近5千人来讨论,这两张图到底哪张是真人。

给出的理由五花八门。有人发现文字、花纹细节很抽象,有人则觉得人物眼神很空洞……

最先进的AI们生成人像有啥规律,逐渐被大家摸索出来了。

01 不看细节已很难分辨

汇总来看,调整饱和度或许是目前最快速辨别的方法。

AI群像照在这种方法下暴露得更加彻底。

不过它存在一个问题。如果图像用JPEG算法压缩过后,该方法可能失效。

比如确定这张照片是真人照片。

但是由于画质压缩以及光线等问题,人物牙齿也有点模糊。

所以网友们还列出了更多分辨人像是否是AI合成的方法。

第一种方法,简单说就是依靠人类的知识判断。

由于AI学习图像的方式和人类并不一致,难免无法100%掌握人类视角下的视觉信息。

造成的结果就是,AI生成的图片常常包含与现实世界不符之处,这就为图像的鉴别提供了着手之处。

用开头的这张图片作为例子。

从整体上看,人物的皮肤过于光滑,看不到任何的毛孔,这种过于完美的特征反而增加了不真实感。

当然这种“不真实感”并不完全等同于“造假”,毕竟经过磨皮处理的图片同样看不到毛孔。

但这也并非唯一的判断因素,AI在图片中留下的与常识的出入也未必只有一处。

实际上,这张图只要稍微看以下细节,就能看到一个比较明显的特征——胸牌上方挂钩奇特的连接方式

还有在高饱和度模式下露出破绽的麦克风,放大之后直接用肉眼也能看出端倪。

更为隐蔽的是,头发末端有几根毛发的位置很不合理,但这样的特征,恐怕要拥有列文虎克级别的视力才能看到了。

不过,随着生成技术的进步,能够找到的特征越来越隐蔽,也是一个无法避免的趋势。

还有一种方法是看文字,虽然AI在字型的刻画上正逐渐克服“鬼画符”的问题,但正确地渲染出有正确实际含义的文字还存在一些困难。

比如有网友发现,照片中的人佩戴的胸牌上,Google标志的下方最后一行字中的两个字母是“CA”,表示美国加州,前面的一大长串应该是城市名。

但实际上,加州根本没有名字如此之长的城市。

除了这些物体本身的细节,还有光线、阴影等信息也可以用来判断真伪。

这张图片是从一段视频当中提取的,在它所在的视频当中还有这样的一帧。

在话筒右侧的位置,有一片十分诡异的阴影,这片阴影对应的是人物的一只手,显然AI在这里处理得有所欠缺。

说到视频,由于涉及前后内容一致性,AI倒是比在静态图像中更容易露出鸡脚马脚。

还有一些特征不算“常识错误”,但也体现出了AI在生成图像时的一些偏好。

比如这四张图,都是AI合成的“普通人”(average people),有没有发现什么共同之处?

有网友表示,这四张图里的人,没有一个是笑脸,这点似乎就体现了AI生图的某种特征。

针对这几张图而言确实如此,但这样的判断方式很难形成系统,毕竟不同的AI绘图工具,特点也都不尽相同。

总之,为了应对逐渐进步的AI,一方面可以加大“列文虎克”的力度,一方面还可以引入像拉高饱和度这样的图像处理技术。

但如果这样的“量变”积累得越来越多,肉眼判断也会越来越困难,图像饱和度可能也有被AI攻破的一天。

所以人们也在转变思路,想到了“以模制模”的方法,用AI生成的图片训练检测模型,从图像中分析更多特征。

比如AI生成的图像在频谱、噪声分布等方面存在许多特点,这些特点依靠肉眼无法捕捉,但AI却能看得很清楚。

当然,也不排除检测方法落后、跟不上模型变化,甚至模型开发者专门进行对抗性开发的可能。

比如前文一直在讨论的这张图片,某AI检测工具认为它是AI合成的概率只有2%。

但AI造假和AI检测之间的博弈过程,本身就是一场“猫鼠游戏”。

所以在检测之外,可能还需要模型的开发者也负起一些责任,例如给AI生成的图片打上隐形水印,让AI造假无处遁形。

02 AI魔高一尺

值得一提的是,如上引发恐慌的AI人像,不少都是由最近爆火的Flux生成/参与制作。

甚至大家已经开始默认,效果太好难以分辨的,就是Flux做的。

它由Stable Diffusion原班人马打造,发布才10天就在网络上掀起轩然大波。

这些精美的假TED演讲照片,都是出自它手。

还有人用Flux和Gen-3一起做出了精美的护肤品广告。

以及多角度的各种合成效果。

它很好解决了AI画手、AI生成图片中文字等问题。

这直接导致现在人类区分AI画图,不能再直接看手和文字了,只能盯着蛛丝马迹猜。

Flux应该是在手部、文字等指标上加强了训练。

这也意味着,如果当下的AI继续在纹理细节、色彩等方面下功夫训练,等到下一代AI画图模型出来时,人类的辨认方法可能又要失效了……

而且Flux还是开源、笔记本电脑上可运行的。不少人现在已经在Forget Midjourney了。

从Stable Diffusion到Flux,用了2年。

从“威尔史密斯吃面条”到“Tedx演讲者”,用了1年。

真不知道以后为了分辨AI生成,人类得想出哪些歪招了……

参考链接:

[1]https://x.com/ChuckBaggett/status/1822686462044754160

[2]https://www.reddit.com/r/artificial/comments/1epjlbl/average_looking_people/

[3]https://www.reddit.com/r/ChatGPT/comments/1epeshq/these_are_all_ai/

[4]https://x.com/levelsio/status/1822751995012268062

本文来自微信公众号“量子位”,作者:关注前沿科技,36氪经授权发布。

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

AI生成 人像识别 图像检测 AI造假
相关文章