cs.AI updates on arXiv.org 8小时前
Efficient Real-Time Aircraft ETA Prediction via Feature Tokenization Transformer
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出利用基于特征标记的Transformer模型,高效预测航空器到达时间,并通过新加坡樟宜机场的ADS-B数据进行验证,结果显示该方法在准确性和计算效率上均优于传统模型。

arXiv:2508.09144v1 Announce Type: cross Abstract: Estimated time of arrival (ETA) for airborne aircraft in real-time is crucial for arrival management in aviation, particularly for runway sequencing. Given the rapidly changing airspace context, the ETA prediction efficiency is as important as its accuracy in a real-time arrival aircraft management system. In this study, we utilize a feature tokenization-based Transformer model to efficiently predict aircraft ETA. Feature tokenization projects raw inputs to latent spaces, while the multi-head self-attention mechanism in the Transformer captures important aspects of the projections, alleviating the need for complex feature engineering. Moreover, the Transformer's parallel computation capability allows it to handle ETA requests at a high frequency, i.e., 1HZ, which is essential for a real-time arrival management system. The model inputs include raw data, such as aircraft latitude, longitude, ground speed, theta degree for the airport, day and hour from track data, the weather context, and aircraft wake turbulence category. With a data sampling rate of 1HZ, the ETA prediction is updated every second. We apply the proposed aircraft ETA prediction approach to Singapore Changi Airport (ICAO Code: WSSS) using one-month Automatic Dependent Surveillance-Broadcast (ADS-B) data from October 1 to October 31, 2022. In the experimental evaluation, the ETA modeling covers all aircraft within a range of 10NM to 300NM from WSSS. The results show that our proposed method method outperforms the commonly used boosting tree based model, improving accuracy by 7\% compared to XGBoost, while requiring only 39\% of its computing time. Experimental results also indicate that, with 40 aircraft in the airspace at a given timestamp, the ETA inference time is only 51.7 microseconds, making it promising for real-time arrival management systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Transformer模型 航空到达时间预测 实时管理系统 新加坡樟宜机场
相关文章