arXiv:2508.09144v1 Announce Type: cross Abstract: Estimated time of arrival (ETA) for airborne aircraft in real-time is crucial for arrival management in aviation, particularly for runway sequencing. Given the rapidly changing airspace context, the ETA prediction efficiency is as important as its accuracy in a real-time arrival aircraft management system. In this study, we utilize a feature tokenization-based Transformer model to efficiently predict aircraft ETA. Feature tokenization projects raw inputs to latent spaces, while the multi-head self-attention mechanism in the Transformer captures important aspects of the projections, alleviating the need for complex feature engineering. Moreover, the Transformer's parallel computation capability allows it to handle ETA requests at a high frequency, i.e., 1HZ, which is essential for a real-time arrival management system. The model inputs include raw data, such as aircraft latitude, longitude, ground speed, theta degree for the airport, day and hour from track data, the weather context, and aircraft wake turbulence category. With a data sampling rate of 1HZ, the ETA prediction is updated every second. We apply the proposed aircraft ETA prediction approach to Singapore Changi Airport (ICAO Code: WSSS) using one-month Automatic Dependent Surveillance-Broadcast (ADS-B) data from October 1 to October 31, 2022. In the experimental evaluation, the ETA modeling covers all aircraft within a range of 10NM to 300NM from WSSS. The results show that our proposed method method outperforms the commonly used boosting tree based model, improving accuracy by 7\% compared to XGBoost, while requiring only 39\% of its computing time. Experimental results also indicate that, with 40 aircraft in the airspace at a given timestamp, the ETA inference time is only 51.7 microseconds, making it promising for real-time arrival management systems.