arXiv:2508.06632v1 Announce Type: cross Abstract: Neural Radiance Fields (NeRF) have shown impressive performance in novel view synthesis, but challenges remain in rendering scenes with complex specular reflections and highlights. Existing approaches may produce blurry reflections due to entanglement between lighting and material properties, or encounter optimization instability when relying on physically-based inverse rendering. In this work, we present a neural rendering framework based on dynamic coefficient decomposition, aiming to improve the modeling of view-dependent appearance. Our approach decomposes complex appearance into a shared, static neural basis that encodes intrinsic material properties, and a set of dynamic coefficients generated by a Coefficient Network conditioned on view and illumination. A Dynamic Radiance Integrator then combines these components to synthesize the final radiance. Experimental results on several challenging benchmarks suggest that our method can produce sharper and more realistic specular highlights compared to existing techniques. We hope that this decomposition paradigm can provide a flexible and effective direction for modeling complex appearance in neural scene representations.