cs.AI updates on arXiv.org 07月29日 12:22
NeuroVoxel-LM: Language-Aligned 3D Perception via Dynamic Voxelization and Meta-Embedding
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出NeuroVoxel-LM,通过结合NeRF与动态分辨率体素化和轻量级元嵌入,有效解决现有3D语言模型在处理大规模点云时的效率与精度问题,显著提升3D场景感知能力。

arXiv:2507.20110v1 Announce Type: cross Abstract: Recent breakthroughs in Visual Language Models (VLMs) and Multimodal Large Language Models (MLLMs) have significantly advanced 3D scene perception towards language-driven cognition. However, existing 3D language models struggle with sparse, large-scale point clouds due to slow feature extraction and limited representation accuracy. To address these challenges, we propose NeuroVoxel-LM, a novel framework that integrates Neural Radiance Fields (NeRF) with dynamic resolution voxelization and lightweight meta-embedding. Specifically, we introduce a Dynamic Resolution Multiscale Voxelization (DR-MSV) technique that adaptively adjusts voxel granularity based on geometric and structural complexity, reducing computational cost while preserving reconstruction fidelity. In addition, we propose the Token-level Adaptive Pooling for Lightweight Meta-Embedding (TAP-LME) mechanism, which enhances semantic representation through attention-based weighting and residual fusion. Experimental results demonstrate that DR-MSV significantly improves point cloud feature extraction efficiency and accuracy, while TAP-LME outperforms conventional max-pooling in capturing fine-grained semantics from NeRF weights.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D场景感知 NeuroVoxel-LM NeRF 点云处理
相关文章