MarkTechPost@AI 9小时前
Building an Advanced Portfolio Analysis and Market Intelligence Tool with OpenBB
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本教程深入探讨OpenBB的先进功能,用于进行全面的投资组合分析和市场情报。我们首先构建一个科技类投资组合,获取历史市场数据并计算关键绩效指标。随后,我们探索高级技术指标、行业表现、市场情绪以及基于相关性的风险分析。通过整合可视化和洞察,使分析更加直观和可操作,确保覆盖投资决策的定量和定性方面。教程展示了如何利用OpenBB进行技术分析、行业评估、市场情绪捕捉以及风险量化,并提供了清晰的投资摘要和未来行动建议。

📈 **投资组合构建与绩效评估**:教程详细介绍了如何使用OpenBB构建一个包含科技股(如AAPL, GOOGL, MSFT, TSLA, NVDA)的投资组合,获取过去一年的历史价格数据,计算标准化权重和日收益率。通过分析,能够实时评估投资组合的年化收益、波动率、夏普比率和最大回撤,并对个股表现进行对比分析。

💡 **高级技术指标分析**:以NVDA为例,教程展示了如何运用OpenBB计算多种技术指标,包括20日和50日简单移动平均线(SMA)、12日和26日指数移动平均线(EMA)、MACD指标及其信号线,以及14日相对强弱指数(RSI)和布林带(Bollinger Bands)。这些指标有助于判断市场动量和潜在的交易信号。

📊 **行业表现与市场情绪洞察**:通过对科技、电动汽车和半导体等多个行业进行年度平均回报率的分析,帮助用户了解不同行业的表现。同时,教程还演示了如何抓取公司近期新闻标题,以捕捉市场情绪,为投资决策提供辅助信息。

⚖️ **风险量化与可视化呈现**:本教程通过计算投资组合的收益率相关性矩阵来量化风险,并进一步计算投资组合的年化波动率。此外,还提供了多维度的性能可视化图表,包括累计收益、30日滚动波动率、收益率分布直方图以及相关性热力图,使复杂的金融数据更加易于理解和分析。

🚀 **投资总结与未来策略**:教程最后总结了投资组合分析的关键洞察,如多元化降低风险、技术指标的重要性、定期再平衡的必要性以及监控相关性的价值。并提出了下一步的行动建议,包括回测不同策略、加入基本面分析、实施自动化预警以及探索ESG和因子筛选等,为用户提供了一个全面的投资分析框架。

In this tutorial, we dive deep into the advanced capabilities of OpenBB to perform comprehensive portfolio analysis and market intelligence. We start by constructing a tech-focused portfolio, fetching historical market data, and computing key performance metrics. We then explore advanced technical indicators, sector-level performance, market sentiment, and correlation-based risk analysis. Along the way, we integrate visualizations and insights to make the analysis more intuitive and actionable, ensuring that we cover both the quantitative and qualitative aspects of investment decision-making. Check out the Full Codes here.

!pip install openbb[all] --quietimport warningswarnings.filterwarnings('ignore')import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfrom datetime import datetime, timedeltaimport openbbfrom openbb import obbpd.set_option('display.max_columns', None)pd.set_option('display.width', 1000)print(" Advanced OpenBB Financial Analysis Tutorial")print("=" * 60)

We begin by installing and importing OpenBB along with essential Python libraries for data analysis and visualization. We configure our environment to suppress warnings, set display options for pandas, and get ready to perform advanced financial analysis. Check out the Full Codes here.

print("\n 1. BUILDING AND ANALYZING A TECH PORTFOLIO")print("-" * 50)tech_stocks = ['AAPL', 'GOOGL', 'MSFT', 'TSLA', 'NVDA']initial_weights = [0.25, 0.20, 0.25, 0.15, 0.15]end_date = datetime.now().strftime('%Y-%m-%d')start_date = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')portfolio_data = {}portfolio_returns = pd.DataFrame()successful_stocks = []print(f"Fetching data from {start_date} to {end_date}...")for i, symbol in enumerate(tech_stocks):   try:       data = obb.equity.price.historical(symbol=symbol, start_date=start_date, end_date=end_date)       df = data.to_df()             if df.index.duplicated().any():           df = df[~df.index.duplicated(keep='first')]             portfolio_data[symbol] = df             returns = df['close'].pct_change().dropna()       portfolio_returns[symbol] = returns       successful_stocks.append(symbol)             print(f" {symbol}: {len(df)} days of data")   except Exception as e:       print(f" Error fetching {symbol}: {str(e)}")if successful_stocks:   successful_indices = [tech_stocks.index(stock) for stock in successful_stocks]   portfolio_weights = [initial_weights[i] for i in successful_indices]   total_weight = sum(portfolio_weights)   portfolio_weights = [w/total_weight for w in portfolio_weights]     print(f"\n Portfolio composition (normalized weights):")   for stock, weight in zip(successful_stocks, portfolio_weights):       print(f"  {stock}: {weight:.1%}")else:   portfolio_weights = []print("\n 2. PORTFOLIO PERFORMANCE ANALYSIS")print("-" * 50)if not portfolio_returns.empty and portfolio_weights:   weighted_returns = (portfolio_returns * portfolio_weights).sum(axis=1)     annual_return = weighted_returns.mean() * 252   annual_volatility = weighted_returns.std() * np.sqrt(252)   sharpe_ratio = annual_return / annual_volatility if annual_volatility > 0 else 0   max_drawdown = (weighted_returns.cumsum().expanding().max() - weighted_returns.cumsum()).max()     print(f"Portfolio Annual Return: {annual_return:.2%}")   print(f"Portfolio Volatility: {annual_volatility:.2%}")   print(f"Sharpe Ratio: {sharpe_ratio:.3f}")   print(f"Max Drawdown: {max_drawdown:.2%}")     print("\n Individual Stock Performance:")   for stock in successful_stocks:       stock_return = portfolio_returns[stock].mean() * 252       stock_vol = portfolio_returns[stock].std() * np.sqrt(252)       print(f"{stock}: Return {stock_return:.2%}, Volatility {stock_vol:.2%}")else:   print(" No valid portfolio data available for analysis")

We build a tech portfolio, fetch a year of prices with OpenBB, compute normalized weights and daily returns, then evaluate performance, annual return, volatility, Sharpe, max drawdown, and review stock-wise stats in real time. Check out the Full Codes here.

print("\n 3. ADVANCED TECHNICAL ANALYSIS")print("-" * 50)symbol = 'NVDA'try:   price_data = obb.equity.price.historical(symbol=symbol, start_date=start_date, end_date=end_date)   df = price_data.to_df()     df['SMA_20'] = df['close'].rolling(window=20).mean()   df['SMA_50'] = df['close'].rolling(window=50).mean()   df['EMA_12'] = df['close'].ewm(span=12).mean()   df['EMA_26'] = df['close'].ewm(span=26).mean()     df['MACD'] = df['EMA_12'] - df['EMA_26']   df['MACD_signal'] = df['MACD'].ewm(span=9).mean()     delta = df['close'].diff()   gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()   loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()   rs = gain / loss   df['RSI'] = 100 - (100 / (1 + rs))     df['BB_middle'] = df['close'].rolling(window=20).mean()   bb_std = df['close'].rolling(window=20).std()   df['BB_upper'] = df['BB_middle'] + (bb_std * 2)   df['BB_lower'] = df['BB_middle'] - (bb_std * 2)     current_price = df['close'].iloc[-1]   current_rsi = df['RSI'].iloc[-1]   macd_signal = "BUY" if df['MACD'].iloc[-1] > df['MACD_signal'].iloc[-1] else "SELL"   price_vs_sma20 = "Above" if current_price > df['SMA_20'].iloc[-1] else "Below"     print(f"\n{symbol} Technical Analysis:")   print(f"Current Price: ${current_price:.2f}")   print(f"RSI (14): {current_rsi:.2f} ({'Overbought' if current_rsi > 70 else 'Oversold' if current_rsi < 30 else 'Neutral'})")   print(f"MACD Signal: {macd_signal}")   print(f"Price vs SMA(20): {price_vs_sma20}")  except Exception as e:   print(f"Error in technical analysis: {str(e)}")print("\n 4. SECTOR ANALYSIS & STOCK SCREENING")print("-" * 50)sectors = {   'Technology': ['AAPL', 'GOOGL', 'MSFT'],   'Electric Vehicles': ['TSLA', 'RIVN', 'LCID'],   'Semiconductors': ['NVDA', 'AMD', 'INTC']}sector_performance = {}for sector_name, stocks in sectors.items():   sector_returns = []   for stock in stocks:       try:           data = obb.equity.price.historical(symbol=stock, start_date=start_date, end_date=end_date)           df = data.to_df()           if df.index.duplicated().any():               df = df[~df.index.duplicated(keep='first')]           returns = df['close'].pct_change().dropna()           sector_returns.append(returns.mean() * 252)       except Exception as e:           print(f" Failed to fetch {stock}: {str(e)}")           continue     if sector_returns:       avg_return = np.mean(sector_returns)       sector_performance[sector_name] = avg_return       print(f"{sector_name}: {avg_return:.2%} average annual return")print("\n 5. MARKET SENTIMENT ANALYSIS")print("-" * 50)for symbol in successful_stocks[:2]:    try:       news = obb.news.company(symbol=symbol, limit=3)       news_df = news.to_df()       print(f"\n{symbol} Recent News Headlines:")       for idx, row in news_df.iterrows():           print(f"• {row.get('title', 'N/A')[:80]}...")           break    except Exception as e:       print(f"News not available for {symbol}: {str(e)}")

We run advanced technical analysis on NVDA, calculating SMAs, EMAs, MACD, RSI, and Bollinger Bands, to gauge momentum and potential entry/exit signals. We then screen sectors by annualized returns across Technology, EVs, and Semiconductors, and we pull fresh company headlines to fold market sentiment into our thesis. Check out the Full Codes here.

print("\n  6. RISK ANALYSIS")print("-" * 50)if not portfolio_returns.empty and len(portfolio_returns.columns) > 1:   correlation_matrix = portfolio_returns.corr()   print("\nPortfolio Correlation Matrix:")   print(correlation_matrix.round(3))     portfolio_var = np.dot(portfolio_weights, np.dot(correlation_matrix *                         (portfolio_returns.std().values.reshape(-1,1) *                          portfolio_returns.std().values.reshape(1,-1)),                         portfolio_weights))   portfolio_risk = np.sqrt(portfolio_var) * np.sqrt(252)   print(f"\nPortfolio Risk (Volatility): {portfolio_risk:.2%}")print("\n 7. CREATING PERFORMANCE VISUALIZATIONS")print("-" * 50)if not portfolio_returns.empty:   fig, axes = plt.subplots(2, 2, figsize=(15, 10))   fig.suptitle('Portfolio Analysis Dashboard', fontsize=16)     cumulative_returns = (1 + portfolio_returns).cumprod()   cumulative_returns.plot(ax=axes[0,0], title='Cumulative Returns', alpha=0.7)   axes[0,0].legend(bbox_to_anchor=(1.05, 1), loc='upper left')     rolling_vol = portfolio_returns.rolling(window=30).std() * np.sqrt(252)   rolling_vol.plot(ax=axes[0,1], title='30-Day Rolling Volatility', alpha=0.7)   axes[0,1].legend(bbox_to_anchor=(1.05, 1), loc='upper left')     weighted_returns.hist(bins=50, ax=axes[1,0], alpha=0.7)   axes[1,0].set_title('Portfolio Returns Distribution')   axes[1,0].axvline(weighted_returns.mean(), color='red', linestyle='--', label='Mean')   axes[1,0].legend()     if len(correlation_matrix) > 1:       sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0, ax=axes[1,1])       axes[1,1].set_title('Correlation Matrix')     plt.tight_layout()   plt.show()print("\n 8. INVESTMENT SUMMARY & RECOMMENDATIONS")print("-" * 50)print("Portfolio Analysis Complete!")print(f" Analyzed {len(successful_stocks)} stocks")print(f" Calculated {len(sector_performance)} sector performances")print(f" Generated technical indicators and risk metrics")if not portfolio_returns.empty and len(successful_stocks) > 0:   best_performer = portfolio_returns.mean().idxmax()   worst_performer = portfolio_returns.mean().idxmin()   print(f" Best Performer: {best_performer}")   print(f" Worst Performer: {worst_performer}")print("\n Key Insights:")print("• Diversification across tech sectors reduces portfolio risk")print("• Technical indicators help identify entry/exit points")print("• Regular rebalancing maintains target allocations")print("• Monitor correlations to avoid concentration risk")print("\n Next Steps:")print("• Backtest different allocation strategies")print("• Add fundamental analysis metrics")print("• Implement automated alerts for technical signals")print("• Explore ESG and factor-based screening")print("\n" + "="*60)print("OpenBB Advanced Tutorial Complete! ")print("Visit https://openbb.co for more features and documentation")

We quantify portfolio risk via correlations and annualized volatility, visualize performance with cumulative returns, rolling volatility, return distribution, and a correlation heatmap, then conclude with best/worst performers, key insights (diversification, signals, rebalancing), and concrete next steps like backtesting, adding fundamentals, alerts, and ESG screening.

In conclusion, we have successfully leveraged OpenBB to build, analyze, and visualize a diversified portfolio while extracting sector insights, technical signals, and risk metrics. We see how combining performance statistics with market sentiment and advanced visualizations empowers us to make informed investment decisions. This approach allows us to continuously monitor and refine our strategies, ensuring that we remain agile in changing market conditions and confident in the data-driven choices we make.


Check out the Full Codes here. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post Building an Advanced Portfolio Analysis and Market Intelligence Tool with OpenBB appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

OpenBB 投资组合分析 量化交易 市场情报 技术分析
相关文章