arXiv:2508.04714v1 Announce Type: new Abstract: Industrial machinery maintenance requires timely intervention to prevent catastrophic failures and optimize operational efficiency. This paper presents an integrated Large Language Model (LLM)-based intelligent system for prescriptive maintenance that extends beyond traditional anomaly detection to provide actionable maintenance recommendations. Building upon our prior LAMP framework for numerical data analysis, we develop a comprehensive solution that combines bearing vibration frequency analysis with multi agentic generation for intelligent maintenance planning. Our approach serializes bearing vibration data (BPFO, BPFI, BSF, FTF frequencies) into natural language for LLM processing, enabling few-shot anomaly detection with high accuracy. The system classifies fault types (inner race, outer race, ball/roller, cage faults) and assesses severity levels. A multi-agentic component processes maintenance manuals using vector embeddings and semantic search, while also conducting web searches to retrieve comprehensive procedural knowledge and access up-to-date maintenance practices for more accurate and in-depth recommendations. The Gemini model then generates structured maintenance recommendations includes immediate actions, inspection checklists, corrective measures, parts requirements, and timeline specifications. Experimental validation in bearing vibration datasets demonstrates effective anomaly detection and contextually relevant maintenance guidance. The system successfully bridges the gap between condition monitoring and actionable maintenance planning, providing industrial practitioners with intelligent decision support. This work advances the application of LLMs in industrial maintenance, offering a scalable framework for prescriptive maintenance across machinery components and industrial sectors.