cs.AI updates on arXiv.org 10小时前
How Robust are LLM-Generated Library Imports? An Empirical Study using Stack Overflow
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实证研究,分析了六种LLM在推荐库方面的表现,发现LLM推荐库存在可用性不足的问题,并提出了改进建议。

arXiv:2507.10818v1 Announce Type: cross Abstract: Software libraries are central to the functionality, security, and maintainability of modern code. As developers increasingly turn to Large Language Models (LLMs) to assist with programming tasks, understanding how these models recommend libraries is essential. In this paper, we conduct an empirical study of six state-of-the-art LLMs, both proprietary and open-source, by prompting them to solve real-world Python problems sourced from Stack Overflow. We analyze the types of libraries they import, the characteristics of those libraries, and the extent to which the recommendations are usable out of the box. Our results show that LLMs predominantly favour third-party libraries over standard ones, and often recommend mature, popular, and permissively licensed dependencies. However, we also identify gaps in usability: 4.6% of the libraries could not be resolved automatically due to structural mismatches between import names and installable packages, and only two models (out of six) provided installation guidance. While the generated code is technically valid, the lack of contextual support places the burden of manually resolving dependencies on the user. Our findings offer actionable insights for both developers and researchers, and highlight opportunities to improve the reliability and usability of LLM-generated code in the context of software dependencies.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 库推荐 软件依赖
相关文章