arXiv:2508.04163v1 Announce Type: new Abstract: AI agents deployed in assistive roles often have to collaborate with other agents (humans, AI systems) without prior coordination. Methods considered state of the art for such ad hoc teamwork often pursue a data-driven approach that needs a large labeled dataset of prior observations, lacks transparency, and makes it difficult to rapidly revise existing knowledge in response to changes. As the number of agents increases, the complexity of decision-making makes it difficult to collaborate effectively. This paper advocates leveraging the complementary strengths of knowledge-based and data-driven methods for reasoning and learning for ad hoc teamwork. For any given goal, our architecture enables each ad hoc agent to determine its actions through non-monotonic logical reasoning with: (a) prior commonsense domain-specific knowledge; (b) models learned and revised rapidly to predict the behavior of other agents; and (c) anticipated abstract future goals based on generic knowledge of similar situations in an existing foundation model. We experimentally evaluate our architecture's capabilities in VirtualHome, a realistic physics-based 3D simulation environment.