arXiv:2508.02856v1 Announce Type: cross Abstract: Millimeter-wave (mmWave) communication systems face increasing susceptibility to advanced beam-stealing attacks, posing a significant physical layer security threat. This paper introduces a novel framework employing an advanced Deep Reinforcement Learning (DRL) agent for proactive and adaptive defense against these sophisticated attacks. A key innovation is leveraging Integrated Sensing and Communications (ISAC) capabilities for active, intelligent threat assessment. The DRL agent, built on a Proximal Policy Optimization (PPO) algorithm, dynamically controls ISAC probing actions to investigate suspicious activities. We introduce an intensive curriculum learning strategy that guarantees the agent experiences successful detection during training to overcome the complex exploration challenges inherent to such a security-critical task. Consequently, the agent learns a robust and adaptive policy that intelligently balances security and communication performance. Numerical results demonstrate that our framework achieves a mean attacker detection rate of 92.8% while maintaining an average user SINR of over 13 dB.