The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence) 2024年05月12日
Deep Reinforcement Learning at the Edge of the Statistical Precipice with Rishabh Agarwal - #559
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

Today we’re joined by Rishabh Agarwal, a research scientist at Google Brain in Montreal. In our conversation with Rishabh, we discuss his recent paper Deep Reinforcement Learning at the Edge of the Statistical Precipice, which won an outstanding paper award at the most recent NeurIPS conference. In this paper, Rishabh and his coauthors call for a change in how deep RL performance is reported on benchmarks when using only a few runs, acknowledging that typically, DeepRL algorithms are evaluated by the performance on a large suite of tasks. Using the Atari 100k benchmark, they found substantial disparities in the conclusions from point estimates alone versus statistical analysis. We explore the reception of this paper from the research community, some of the more surprising results, what incentives researchers have to implement these types of changes in self-reporting when publishing, and much more.


The complete show notes for this episode can be found at twimlai.com/go/559

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

相关文章