cs.AI updates on arXiv.org 5小时前
AttZoom: Attention Zoom for Better Visual Features
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出Attention Zoom,一种模块化和模型无关的空间注意力机制,旨在提升卷积神经网络特征提取能力。通过独立层强调输入中的高重要性区域,该方法在CIFAR-100和TinyImageNet数据集上实现了Top-1和Top-5分类精度的提升,并揭示了其有效性和通用性。

arXiv:2508.03625v1 Announce Type: cross Abstract: We present Attention Zoom, a modular and model-agnostic spatial attention mechanism designed to improve feature extraction in convolutional neural networks (CNNs). Unlike traditional attention approaches that require architecture-specific integration, our method introduces a standalone layer that spatially emphasizes high-importance regions in the input. We evaluated Attention Zoom on multiple CNN backbones using CIFAR-100 and TinyImageNet, showing consistent improvements in Top-1 and Top-5 classification accuracy. Visual analyses using Grad-CAM and spatial warping reveal that our method encourages fine-grained and diverse attention patterns. Our results confirm the effectiveness and generality of the proposed layer for improving CCNs with minimal architectural overhead.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

Attention Zoom CNNs 空间注意力机制 特征提取 分类精度
相关文章