cs.AI updates on arXiv.org 07月14日 12:08
A Hybrid Multi-Well Hopfield-CNN with Feature Extraction and K-Means for MNIST Classification
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本研究提出一种结合卷积神经网络和Hopfield网络的混合模型,用于MNIST数据集中的手写数字分类。通过CNN提取图像特征,利用k-means聚类生成原型,通过多井Hopfield网络进行分类。该模型在MNIST图像上实现了99.2%的测试准确率,验证了其有效性。

arXiv:2507.08766v1 Announce Type: cross Abstract: This study presents a hybrid model for classifying handwritten digits in the MNIST dataset, combining convolutional neural networks (CNNs) with a multi-well Hopfield network. The approach employs a CNN to extract high-dimensional features from input images, which are then clustered into class-specific prototypes using k-means clustering. These prototypes serve as attractors in a multi-well energy landscape, where a Hopfield network performs classification by minimizing an energy function that balances feature similarity and class assignment.The model's design enables robust handling of intraclass variability, such as diverse handwriting styles, while providing an interpretable framework through its energy-based decision process. Through systematic optimization of the CNN architecture and the number of wells, the model achieves a high test accuracy of 99.2% on 10,000 MNIST images, demonstrating its effectiveness for image classification tasks. The findings highlight the critical role of deep feature extraction and sufficient prototype coverage in achieving high performance, with potential for broader applications in pattern recognition.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

卷积神经网络 Hopfield网络 手写数字识别 特征提取 分类模型
相关文章