cs.AI updates on arXiv.org 08月05日 19:29
PESTO: Real-Time Pitch Estimation with Self-supervised Transposition-equivariant Objective
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为PESTO的自监督学习模型,用于单音高估计,采用Siamese架构和VQT处理技术,通过无标注数据训练,展现出优异的跨数据集泛化能力,适用于实时应用。

arXiv:2508.01488v1 Announce Type: cross Abstract: In this paper, we introduce PESTO, a self-supervised learning approach for single-pitch estimation using a Siamese architecture. Our model processes individual frames of a Variable-$Q$ Transform (VQT) and predicts pitch distributions. The neural network is designed to be equivariant to translations, notably thanks to a Toeplitz fully-connected layer. In addition, we construct pitch-shifted pairs by translating and cropping the VQT frames and train our model with a novel class-based transposition-equivariant objective, eliminating the need for annotated data. Thanks to this architecture and training objective, our model achieves remarkable performances while being very lightweight ($130$k parameters). Evaluations on music and speech datasets (MIR-1K, MDB-stem-synth, and PTDB) demonstrate that PESTO not only outperforms self-supervised baselines but also competes with supervised methods, exhibiting superior cross-dataset generalization. Finally, we enhance PESTO's practical utility by developing a streamable VQT implementation using cached convolutions. Combined with our model's low latency (less than 10 ms) and minimal parameter count, this makes PESTO particularly suitable for real-time applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

PESTO 自监督学习 单音高估计 Siamese架构 VQT
相关文章