arXiv:2308.02562v3 Announce Type: replace-cross Abstract: This study introduces a novel multimodal food recognition framework that effectively combines visual and textual modalities to enhance classification accuracy and robustness. The proposed approach employs a dynamic multimodal fusion strategy that adaptively integrates features from unimodal visual inputs and complementary textual metadata. This fusion mechanism is designed to maximize the use of informative content, while mitigating the adverse impact of missing or inconsistent modality data. The framework was rigorously evaluated on the UPMC Food-101 dataset and achieved unimodal classification accuracies of 73.60% for images and 88.84% for text. When both modalities were fused, the model achieved an accuracy of 97.84%, outperforming several state-of-the-art methods. Extensive experimental analysis demonstrated the robustness, adaptability, and computational efficiency of the proposed settings, highlighting its practical applicability to real-world multimodal food-recognition scenarios.