cs.AI updates on arXiv.org 07月03日 12:07
Autonomous AI Surveillance: Multimodal Deep Learning for Cognitive and Behavioral Monitoring
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种集成多种模态(包括瞌睡监测、手机使用跟踪和面部识别)的新型教室监控系统,以更精确地评估学生的注意力。系统采用YOLOv8模型检测手机和睡眠使用,通过LResNet Occ FC和YOLO、MTCNN实现面部识别。该系统在RMFD数据集和Roboflow数据集上训练,实现实时监控,并具有自动考勤记录功能。

arXiv:2507.01590v1 Announce Type: cross Abstract: This study presents a novel classroom surveillance system that integrates multiple modalities, including drowsiness, tracking of mobile phone usage, and face recognition,to assess student attentiveness with enhanced precision.The system leverages the YOLOv8 model to detect both mobile phone and sleep usage,(Ghatge et al., 2024) while facial recognition is achieved through LResNet Occ FC body tracking using YOLO and MTCNN.(Durai et al., 2024) These models work in synergy to provide comprehensive, real-time monitoring, offering insights into student engagement and behavior.(S et al., 2023) The framework is trained on specialized datasets, such as the RMFD dataset for face recognition and a Roboflow dataset for mobile phone detection. The extensive evaluation of the system shows promising results. Sleep detection achieves 97. 42% mAP@50, face recognition achieves 86. 45% validation accuracy and mobile phone detection reach 85. 89% mAP@50. The system is implemented within a core PHP web application and utilizes ESP32-CAM hardware for seamless data capture.(Neto et al., 2024) This integrated approach not only enhances classroom monitoring, but also ensures automatic attendance recording via face recognition as students remain seated in the classroom, offering scalability for diverse educational environments.(Banada,2025)

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

教室监控系统 多模态识别 学生注意力监测
相关文章