cs.AI updates on arXiv.org 08月05日 19:29
GaussianCross: Cross-modal Self-supervised 3D Representation Learning via Gaussian Splatting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出GaussianCross,一种新型跨模态自监督3D表示学习架构,通过融合3D高斯Splatting技术,将3D点云转换为统一的高斯表示,并引入自适应蒸馏模块,在多个基准测试中取得优异性能。

arXiv:2508.02172v1 Announce Type: cross Abstract: The significance of informative and robust point representations has been widely acknowledged for 3D scene understanding. Despite existing self-supervised pre-training counterparts demonstrating promising performance, the model collapse and structural information deficiency remain prevalent due to insufficient point discrimination difficulty, yielding unreliable expressions and suboptimal performance. In this paper, we present GaussianCross, a novel cross-modal self-supervised 3D representation learning architecture integrating feed-forward 3D Gaussian Splatting (3DGS) techniques to address current challenges. GaussianCross seamlessly converts scale-inconsistent 3D point clouds into a unified cuboid-normalized Gaussian representation without missing details, enabling stable and generalizable pre-training. Subsequently, a tri-attribute adaptive distillation splatting module is incorporated to construct a 3D feature field, facilitating synergetic feature capturing of appearance, geometry, and semantic cues to maintain cross-modal consistency. To validate GaussianCross, we perform extensive evaluations on various benchmarks, including ScanNet, ScanNet200, and S3DIS. In particular, GaussianCross shows a prominent parameter and data efficiency, achieving superior performance through linear probing (

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

3D点云 自监督学习 Gaussian Splatting 3D表示学习 GaussianCross
相关文章