arXiv:2508.02130v1 Announce Type: cross Abstract: Climate change has intensified the frequency and severity of extreme weather events, presenting unprecedented challenges to the agricultural industry worldwide. In this investigation, we focus on kiwifruit farming in New Zealand. We propose to examine the impacts of climate-induced extreme events, specifically frost, drought, extreme rainfall, and heatwave, on kiwifruit harvest yields. These four events were selected due to their significant impacts on crop productivity and their prevalence as recorded by climate monitoring institutions in the country. We employed Isolation Forest, an unsupervised anomaly detection method, to analyse climate history and recorded extreme events, alongside with kiwifruit yields. Our analysis reveals considerable variability in how different types of extreme event affect kiwifruit yields underscoring notable discrepancies between climatic extremes and individual farm's yield outcomes. Additionally, our study highlights critical limitations of current anomaly detection approaches, particularly in accurately identifying events such as frost. These findings emphasise the need for integrating supplementary features like farm management strategies with climate adaptation practices. Our further investigation will employ ensemble methods that consolidate nearby farms' yield data and regional climate station features to reduce variance, thereby enhancing the accuracy and reliability of extreme event detection and the formulation of response strategies.