cs.AI updates on arXiv.org 08月05日 19:10
FECT: Factuality Evaluation of Interpretive AI-Generated Claims in Contact Center Conversation Transcripts
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对LLM生成对话分析结果的事实评估新方法,包括3D评估范式和FECT数据集,以解决企业应用中LLM事实性幻觉问题。

arXiv:2508.00889v1 Announce Type: cross Abstract: Large language models (LLMs) are known to hallucinate, producing natural language outputs that are not grounded in the input, reference materials, or real-world knowledge. In enterprise applications where AI features support business decisions, such hallucinations can be particularly detrimental. LLMs that analyze and summarize contact center conversations introduce a unique set of challenges for factuality evaluation, because ground-truth labels often do not exist for analytical interpretations about sentiments captured in the conversation and root causes of the business problems. To remedy this, we first introduce a \textbf{3D} -- \textbf{Decompose, Decouple, Detach} -- paradigm in the human annotation guideline and the LLM-judges' prompt to ground the factuality labels in linguistically-informed evaluation criteria. We then introduce \textbf{FECT}, a novel benchmark dataset for \textbf{F}actuality \textbf{E}valuation of Interpretive AI-Generated \textbf{C}laims in Contact Center Conversation \textbf{T}ranscripts, labeled under our 3D paradigm. Lastly, we report our findings from aligning LLM-judges on the 3D paradigm. Overall, our findings contribute a new approach for automatically evaluating the factuality of outputs generated by an AI system for analyzing contact center conversations.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 事实评估 对话分析 企业应用 3D范式
相关文章