cs.AI updates on arXiv.org 前天 19:10
StutterCut: Uncertainty-Guided Normalised Cut for Dysfluency Segmentation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了一种名为StutterCut的半监督框架,通过将语音流畅度分割视为图划分问题,实现语音流畅度检测与分割,并在真实和合成数据集上展现出优越性能。

arXiv:2508.02255v1 Announce Type: cross Abstract: Detecting and segmenting dysfluencies is crucial for effective speech therapy and real-time feedback. However, most methods only classify dysfluencies at the utterance level. We introduce StutterCut, a semi-supervised framework that formulates dysfluency segmentation as a graph partitioning problem, where speech embeddings from overlapping windows are represented as graph nodes. We refine the connections between nodes using a pseudo-oracle classifier trained on weak (utterance-level) labels, with its influence controlled by an uncertainty measure from Monte Carlo dropout. Additionally, we extend the weakly labelled FluencyBank dataset by incorporating frame-level dysfluency boundaries for four dysfluency types. This provides a more realistic benchmark compared to synthetic datasets. Experiments on real and synthetic datasets show that StutterCut outperforms existing methods, achieving higher F1 scores and more precise stuttering onset detection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

StutterCut 语音流畅度 半监督框架 图划分 语音处理
相关文章