cs.AI updates on arXiv.org 23小时前
WinkTPG: An Execution Framework for Multi-Agent Path Finding Using Temporal Reasoning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为kTPG的多智能体速度优化算法,通过将MAPF计划转化为动力学可行的计划,解决大规模智能体路径规划问题。实验证明,该算法在1秒内可生成多达1000个智能体的速度配置文件,并比现有方法提高解决方案质量51.7%。

arXiv:2508.01495v1 Announce Type: new Abstract: Planning collision-free paths for a large group of agents is a challenging problem with numerous real-world applications. While recent advances in Multi-Agent Path Finding (MAPF) have shown promising progress, standard MAPF algorithms rely on simplified kinodynamic models, preventing agents from directly following the generated MAPF plan. To bridge this gap, we propose kinodynamic Temporal Plan Graph Planning (kTPG), a multi-agent speed optimization algorithm that efficiently refines a MAPF plan into a kinodynamically feasible plan while accounting for uncertainties and preserving collision-freeness. Building on kTPG, we propose Windowed kTPG (WinkTPG), a MAPF execution framework that incrementally refines MAPF plans using a window-based mechanism, dynamically incorporating agent information during execution to reduce uncertainty. Experiments show that WinkTPG can generate speed profiles for up to 1,000 agents in 1 second and improves solution quality by up to 51.7% over existing MAPF execution methods.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多智能体路径规划 kTPG算法 速度优化 动力学模型 不确定性
相关文章