cs.AI updates on arXiv.org 08月05日 19:10
$R^2$-CoD: Understanding Text-Graph Complementarity in Relational Reasoning via Knowledge Co-Distillation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过分析文本-图互作对混合模型的影响,探讨了知识共蒸馏架构下文本-图表示互补性,并针对五个涉及关系推理的任务进行了实证研究,揭示了文本-图表示在训练过程中的可解释性模式及其整合的益处。

arXiv:2508.01475v1 Announce Type: new Abstract: Relational reasoning lies at the core of many NLP tasks, drawing on complementary signals from text and graphs. While prior research has investigated how to leverage this dual complementarity, a detailed and systematic understanding of text-graph interplay and its effect on hybrid models remains underexplored. We take an analysis-driven approach to investigate text-graph representation complementarity via a unified architecture that supports knowledge co-distillation (CoD). We explore five tasks involving relational reasoning that differ in how text and graph structures encode the information needed to solve that task. By tracking how these dual representations evolve during training, we uncover interpretable patterns of alignment and divergence, and provide insights into when and why their integration is beneficial.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

NLP任务 文本-图互作 知识共蒸馏 关系推理 混合模型
相关文章