cs.AI updates on arXiv.org 前天 19:09
An analysis of AI Decision under Risk: Prospect theory emerges in Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文通过实验验证了Kahneman和Tversky的'前景理论'在大型语言模型中的适用性,发现模型在风险决策中表现出与人类相似的特征,并强调了语境在风险偏好中的作用。

arXiv:2508.00902v1 Announce Type: new Abstract: Judgment of risk is key to decision-making under uncertainty. As Daniel Kahneman and Amos Tversky famously discovered, humans do so in a distinctive way that departs from mathematical rationalism. Specifically, they demonstrated experimentally that humans accept more risk when they feel themselves at risk of losing something than when they might gain. I report the first tests of Kahneman and Tversky's landmark 'prospect theory' with Large Language Models, including today's state of the art chain-of-thought 'reasoners'. In common with humans, I find that prospect theory often anticipates how these models approach risky decisions across a range of scenarios. I also demonstrate that context is key to explaining much of the variance in risk appetite. The 'frame' through which risk is apprehended appears to be embedded within the language of the scenarios tackled by the models. Specifically, I find that military scenarios generate far larger 'framing effects' than do civilian settings, ceteris paribus. My research suggests, therefore, that language models the world, capturing our human heuristics and biases. But also that these biases are uneven - the idea of a 'frame' is richer than simple gains and losses. Wittgenstein's notion of 'language games' explains the contingent, localised biases activated by these scenarios. Finally, I use my findings to reframe the ongoing debate about reasoning and memorisation in LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 风险判断 前景理论 语境 Kahneman-Tversky
相关文章