MarkTechPost@AI 5小时前
A Technical Roadmap to Context Engineering in LLMs: Mechanisms, Benchmarks, and Open Challenges
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章深入探讨了“语境工程”(Context Engineering),将其定义为一门系统性学科,旨在组织、汇编和优化输入大型语言模型(LLMs)的所有语境信息,以全面提升其理解、推理、适应性和实际应用能力。这超越了传统的提示工程,将语境视为动态、结构化的组件集合,通过显式函数进行检索、选择和组织,并考虑资源和架构限制。文章详细阐述了语境工程的构成要素,包括语境检索与生成、语境处理和语境管理,并介绍了检索增强生成(RAG)、记忆系统、工具集成推理及多智能体系统等关键实现方式。同时,文章也指出了当前研究中的不对称性、集成性挑战以及评估方法的局限,并展望了统一理论、效率提升、多模态整合以及安全伦理等未来发展方向。

💡 语境工程是LLM信息优化的系统性学科:它将语境视为动态、结构化的组件,通过显式函数进行组织、汇编和优化,以最大化LLM在理解、推理、适应性及实际应用中的表现,这超越了仅将语境视为静态字符串的提示工程。

🧩 语境工程包含三大核心组成部分:1. 语境检索与生成(包括提示工程、链式思考、检索增强生成等);2. 语境处理(如长序列处理、语境自我完善、多模态信息整合);3. 语境管理(涉及记忆层级、压缩及可扩展管理)。

🚀 关键系统实现推动LLM能力边界:检索增强生成(RAG)通过集成外部知识支持动态检索;记忆系统实现持久化存储,支持长期学习;工具集成推理使LLM能调用外部工具;多智能体系统则促进了LLM间的协作。

⚠️ 当前研究面临多重挑战:LLM在理解复杂语境与生成复杂输出之间存在不对称性;模块化架构的集成是关键;现有评估指标难以捕捉语境工程带来的多步、协作行为;理论基础、效率扩展、多模态整合及安全伦理仍是开放性研究问题。

🌐 语境工程赋能广泛应用并引领未来:该技术支持长文档问答、个性化助手、科学问题解决及多智能体协作等,未来发展方向包括构建统一理论、提升效率、实现无缝多模态整合,并确保鲁棒、安全、合乎伦理的部署。

Estimated reading time: 4 minutes

The paper “A Survey of Context Engineering for Large Language Models” establishes Context Engineering as a formal discipline that goes far beyond prompt engineering, providing a unified, systematic framework for designing, optimizing, and managing the information that guides Large Language Models (LLMs). Here’s an overview of its main contributions and framework:

What Is Context Engineering?

Context Engineering is defined as the science and engineering of organizing, assembling, and optimizing all forms of context fed into LLMs to maximize performance across comprehension, reasoning, adaptability, and real-world application. Rather than viewing context as a static string (the premise of prompt engineering), context engineering treats it as a dynamic, structured assembly of components—each sourced, selected, and organized through explicit functions, often under tight resource and architectural constraints.

Taxonomy of Context Engineering

The paper breaks down context engineering into:

1. Foundational Components

a. Context Retrieval and Generation

b. Context Processing

c. Context Management

2. System Implementations

a. Retrieval-Augmented Generation (RAG)

b. Memory Systems

c. Tool-Integrated Reasoning

d. Multi-Agent Systems

Key Insights and Research Gaps

Applications and Impact

Context engineering supports robust, domain-adaptive AI across:

Future Directions

In summary: Context Engineering is emerging as the pivotal discipline for guiding the next generation of LLM-based intelligent systems, shifting the focus from creative prompt writing to the rigorous science of information optimization, system design, and context-driven AI.


Check out the Paper. Feel free to check out our GitHub Page for Tutorials, Codes and Notebooks. Also, feel free to follow us on Twitter and don’t forget to join our 100k+ ML SubReddit and Subscribe to our Newsletter.

The post A Technical Roadmap to Context Engineering in LLMs: Mechanisms, Benchmarks, and Open Challenges appeared first on MarkTechPost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

语境工程 LLM 提示工程 AI技术 信息优化
相关文章