cs.AI updates on arXiv.org 前天 12:08
DynaSwarm: Dynamically Graph Structure Selection for LLM-based Multi-agent System
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出DynaSwarm,通过A2C机制优化图结构并动态选择最优图结构,实现LLM多智能体系统的灵活性和性能提升。实验证明,DynaSwarm在问答、数学推理和编码任务上优于现有方法。

arXiv:2507.23261v1 Announce Type: cross Abstract: Current multi-agent systems (MAS) frameworks often rely on manually designed and static collaboration graph structures, limiting adaptability and performance. To address these limitations, we propose DynaSwarm, a dynamic framework that enhances LLM-based MAS through two key innovations: (1) an actor-critic reinforcement learning (A2C) mechanism to optimize graph structures with improved stability over prior RL methods, and (2) a dynamic graph selector that adaptively chooses the optimal graph structure for each input sample via parameter-efficient LLM fine-tuning. DynaSwarm eliminates the need for rigid, one-fits-all graph architectures, instead leveraging sample-specific idiosyncrasies to dynamically route queries through specialized agent networks. (c) We propose to fine-tune the demonstration retriever to fully exploit the power of in-context learning (ICL). Extensive experiments on question answering, mathematical reasoning, and coding tasks demonstrate that DynaSwarm consistently outperforms state-of-the-art single-agent and MAS baselines across multiple LLM backbones. Our findings highlight the importance of sample-aware structural flexibility in LLM MAS designs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DynaSwarm 多智能体系统 LLM 动态图结构 A2C机制
相关文章