cs.AI updates on arXiv.org 08月01日 12:08
Enhancing RAG Efficiency with Adaptive Context Compression
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出ACC-RAG框架,通过动态调整压缩率,优化RAG的推理效率,在Wikipedia和五个QA数据集上,ACC-RAG在保持或提高准确率的同时,比标准RAG快4倍。

arXiv:2507.22931v1 Announce Type: cross Abstract: Retrieval-augmented generation (RAG) enhances large language models (LLMs) with external knowledge but incurs significant inference costs due to lengthy retrieved contexts. While context compression mitigates this issue, existing methods apply fixed compression rates, over-compressing simple queries or under-compressing complex ones. We propose Adaptive Context Compression for RAG (ACC-RAG), a framework that dynamically adjusts compression rates based on input complexity, optimizing inference efficiency without sacrificing accuracy. ACC-RAG combines a hierarchical compressor (for multi-granular embeddings) with a context selector to retain minimal sufficient information, akin to human skimming. Evaluated on Wikipedia and five QA datasets, ACC-RAG outperforms fixed-rate methods and matches/unlocks over 4 times faster inference versus standard RAG while maintaining or improving accuracy.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG 自适应压缩 推理效率 知识增强 LLM
相关文章