cs.AI updates on arXiv.org 前天 12:08
Can one size fit all?: Measuring Failure in Multi-Document Summarization Domain Transfer
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文评估了多文档摘要模型在不同训练方法、领域和维度上的表现,分析了模型在零样本跨域迁移设置中为何会失败,并探讨了应用流行摘要指标时可能存在的问题。

arXiv:2503.15768v2 Announce Type: replace-cross Abstract: Abstractive multi-document summarization (MDS) is the task of automatically summarizing information in multiple documents, from news articles to conversations with multiple speakers. The training approaches for current MDS models can be grouped into four approaches: end-to-end with special pre-training ("direct"), chunk-then-summarize, extract-then-summarize, and inference with GPT-style models. In this work, we evaluate MDS models across training approaches, domains, and dimensions (reference similarity, quality, and factuality), to analyze how and why models trained on one domain can fail to summarize documents from another (News, Science, and Conversation) in the zero-shot domain transfer setting. We define domain-transfer "failure" as a decrease in factuality, higher deviation from the target, and a general decrease in summary quality. In addition to exploring domain transfer for MDS models, we examine potential issues with applying popular summarization metrics out-of-the-box.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

多文档摘要 跨域迁移 模型评估 摘要指标 领域适应性
相关文章