cs.AI updates on arXiv.org 07月31日 12:48
A Mean-Field Theory of $\Theta$-Expectations
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出针对非凸模型的新随机微积分理论,引入一种新型完全耦合的均值场向前向后随机微分方程,并证明了该方程的局部和全局适定性,为非凸、内生模糊性下的随机微积分提供严谨的理论基础。

arXiv:2507.22577v1 Announce Type: cross Abstract: The canonical theory of sublinear expectations, a foundation of stochastic calculus under ambiguity, is insensitive to the non-convex geometry of primitive uncertainty models. This paper develops a new stochastic calculus for a structured class of such non-convex models. We introduce a class of fully coupled Mean-Field Forward-Backward Stochastic Differential Equations where the BSDE driver is defined by a pointwise maximization over a law-dependent, non-convex set. Mathematical tractability is achieved via a uniform strong concavity assumption on the driver with respect to the control variable, which ensures the optimization admits a unique and stable solution. A central contribution is to establish the Lipschitz stability of this optimizer from primitive geometric and regularity conditions, which underpins the entire well-posedness theory. We prove local and global well-posedness theorems for the FBSDE system. The resulting valuation functional, the $\Theta$-Expectation, is shown to be dynamically consistent and, most critically, to violate the axiom of sub-additivity. This, along with its failure to be translation invariant, demonstrates its fundamental departure from the convex paradigm. This work provides a rigorous foundation for stochastic calculus under a class of non-convex, endogenous ambiguity.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

非凸模型 随机微积分 均值场向前向后方程 适定性 不确定性
相关文章