cs.AI updates on arXiv.org 07月31日 12:48
Systematic Evaluation of Knowledge Graph Repair with Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出一种基于形状约束语言(SHACL)的约束违反评价方法,通过新型机制生成违反,评估修复系统性能,发现最佳提示策略。

arXiv:2507.22419v1 Announce Type: cross Abstract: We present a systematic approach for evaluating the quality of knowledge graph repairs with respect to constraint violations defined in shapes constraint language (SHACL). Current evaluation methods rely on \emph{ad hoc} datasets, which limits the rigorous analysis of repair systems in more general settings. Our method addresses this gap by systematically generating violations using a novel mechanism, termed violation-inducing operations (VIOs). We use the proposed evaluation framework to assess a range of repair systems which we build using large language models. We analyze the performance of these systems across different prompting strategies. Results indicate that concise prompts containing both the relevant violated SHACL constraints and key contextual information from the knowledge graph yield the best performance.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

知识图谱修复 SHACL 评价方法 修复系统 性能评估
相关文章