cs.AI updates on arXiv.org 07月31日 12:48
Measuring Time-Series Dataset Similarity using Wasserstein Distance
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于Wasserstein距离的时序数据集相似度度量方法,通过计算对应多变量正态分布间的Wasserstein距离来评估时序数据集的相似性,并验证了其在模型选择、微调和可视化中的有效性。

arXiv:2507.22189v1 Announce Type: cross Abstract: The emergence of time-series foundation model research elevates the growing need to measure the (dis)similarity of time-series datasets. A time-series dataset similarity measure aids research in multiple ways, including model selection, finetuning, and visualization. In this paper, we propose a distribution-based method to measure time-series dataset similarity by leveraging the Wasserstein distance. We consider a time-series dataset an empirical instantiation of an underlying multivariate normal distribution (MVN). The similarity between two time-series datasets is thus computed as the Wasserstein distance between their corresponding MVNs. Comprehensive experiments and visualization show the effectiveness of our approach. Specifically, we show how the Wasserstein distance helps identify similar time-series datasets and facilitates inference performance estimation of foundation models in both out-of-distribution and transfer learning evaluation, with high correlations between our proposed measure and the inference loss (>0.60).

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

时间序列数据集 相似度度量 Wasserstein距离 多变量正态分布 模型评估
相关文章