cs.AI updates on arXiv.org 07月30日 12:46
Deep Unfolding for MIMO Signal Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种基于深度展开神经网络的MIMO检测器,采用Wirtinger算子实现复值计算,实现高效、可解释、低复杂度的MIMO信号检测,适用于下一代大规模MIMO系统。

arXiv:2507.21152v1 Announce Type: cross Abstract: In this paper, we propose a deep unfolding neural network-based MIMO detector that incorporates complex-valued computations using Wirtinger calculus. The method, referred as Dynamic Partially Shrinkage Thresholding (DPST), enables efficient, interpretable, and low-complexity MIMO signal detection. Unlike prior approaches that rely on real-valued approximations, our method operates natively in the complex domain, aligning with the fundamental nature of signal processing tasks. The proposed algorithm requires only a small number of trainable parameters, allowing for simplified training. Numerical results demonstrate that the proposed method achieves superior detection performance with fewer iterations and lower computational complexity, making it a practical solution for next-generation massive MIMO systems.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

DPST算法 MIMO检测 深度神经网络 Wirtinger算子 大规模MIMO
相关文章