cs.AI updates on arXiv.org 07月29日 12:22
Extended Histogram-based Outlier Score (EHBOS)
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为EHBOS的异常检测方法,通过引入二维直方图来捕捉特征对之间的依赖关系,有效识别HBOS无法检测的上下文和依赖驱动型异常,并在多个基准数据集上验证了其有效性和鲁棒性。

arXiv:2502.05719v2 Announce Type: replace-cross Abstract: Histogram-Based Outlier Score (HBOS) is a widely used outlier or anomaly detection method known for its computational efficiency and simplicity. However, its assumption of feature independence limits its ability to detect anomalies in datasets where interactions between features are critical. In this paper, we propose the Extended Histogram-Based Outlier Score (EHBOS), which enhances HBOS by incorporating two-dimensional histograms to capture dependencies between feature pairs. This extension allows EHBOS to identify contextual and dependency-driven anomalies that HBOS fails to detect. We evaluate EHBOS on 17 benchmark datasets, demonstrating its effectiveness and robustness across diverse anomaly detection scenarios. EHBOS outperforms HBOS on several datasets, particularly those where feature interactions are critical in defining the anomaly structure, achieving notable improvements in ROC AUC. These results highlight that EHBOS can be a valuable extension to HBOS, with the ability to model complex feature dependencies. EHBOS offers a powerful new tool for anomaly detection, particularly in datasets where contextual or relational anomalies play a significant role.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

异常检测 EHBOS 特征依赖 数据集
相关文章