cs.AI updates on arXiv.org 07月29日 12:22
The Carbon Cost of Conversation, Sustainability in the Age of Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文分析了大型语言模型的环境成本,包括碳排放、水资源消耗和电子垃圾贡献,并探讨了可持续NLP的路径和解决方案。

arXiv:2507.20018v1 Announce Type: cross Abstract: Large language models (LLMs) like GPT-3 and BERT have revolutionized natural language processing (NLP), yet their environmental costs remain dangerously overlooked. This article critiques the sustainability of LLMs, quantifying their carbon footprint, water usage, and contribution to e-waste through case studies of models such as GPT-4 and energy-efficient alternatives like Mistral 7B. Training a single LLM can emit carbon dioxide equivalent to hundreds of cars driven annually, while data centre cooling exacerbates water scarcity in vulnerable regions. Systemic challenges corporate greenwashing, redundant model development, and regulatory voids perpetuate harm, disproportionately burdening marginalized communities in the Global South. However, pathways exist for sustainable NLP: technical innovations (e.g., model pruning, quantum computing), policy reforms (carbon taxes, mandatory emissions reporting), and cultural shifts prioritizing necessity over novelty. By analysing industry leaders (Google, Microsoft) and laggards (Amazon), this work underscores the urgency of ethical accountability and global cooperation. Without immediate action, AIs ecological toll risks outpacing its societal benefits. The article concludes with a call to align technological progress with planetary boundaries, advocating for equitable, transparent, and regenerative AI systems that prioritize both human and environmental well-being.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 环境成本 可持续NLP 政策改革 技术创新
相关文章