cs.AI updates on arXiv.org 07月29日 12:21
Ultracoarse Equilibria and Ordinal-Folding Dynamics in Operator-Algebraic Models of Infinite Multi-Agent Games
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种适用于无限多智能体博弈的非交换算子代数框架,证明基于后悔的学习动态收敛至唯一量子响应均衡,并引入序数折叠指数以衡量动态的自指深度。

arXiv:2507.19694v1 Announce Type: cross Abstract: We develop an operator algebraic framework for infinite games with a continuum of agents and prove that regret based learning dynamics governed by a noncommutative continuity equation converge to a unique quantal response equilibrium under mild regularity assumptions. The framework unifies functional analysis, coarse geometry and game theory by assigning to every game a von Neumann algebra that represents collective strategy evolution. A reflective regret operator within this algebra drives the flow of strategy distributions and its fixed point characterises equilibrium. We introduce the ordinal folding index, a computable ordinal valued metric that measures the self referential depth of the dynamics, and show that it bounds the transfinite time needed for convergence, collapsing to zero on coarsely amenable networks. The theory yields new invariant subalgebra rigidity results, establishes existence and uniqueness of envy free and maximin share allocations in continuum economies, and links analytic properties of regret flows with empirical stability phenomena in large language models. These contributions supply a rigorous mathematical foundation for large scale multi agent systems and demonstrate the utility of ordinal metrics for equilibrium selection.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

非交换算子代数 无限博弈 后悔学习 量子响应均衡 序数折叠指数
相关文章