cs.AI updates on arXiv.org 07月29日 12:21
BikeVAE-GNN: A Variational Autoencoder-Augmented Hybrid Graph Neural Network for Sparse Bicycle Volume Estimation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出BikeVAE-GNN,一种结合混合图神经网络和变分自编码器的双任务框架,用于估算稀疏自行车网络中的平均每日自行车流量,并通过实验验证其有效性。

arXiv:2507.19517v1 Announce Type: cross Abstract: Accurate link-level bicycle volume estimation is essential for informed urban and transport planning but it is challenged by extremely sparse count data in urban bicycling networks worldwide. We propose BikeVAE-GNN, a novel dual-task framework augmenting a Hybrid Graph Neural Network (GNN) with Variational Autoencoder (VAE) to estimate Average Daily Bicycle (ADB) counts, addressing sparse bicycle networks. The Hybrid-GNN combines Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and GraphSAGE to effectively model intricate spatial relationships in sparse networks while VAE generates synthetic nodes and edges to enrich the graph structure and enhance the estimation performance. BikeVAE-GNN simultaneously performs - regression for bicycling volume estimation and classification for bicycling traffic level categorization. We demonstrate the effectiveness of BikeVAE-GNN using OpenStreetMap data and publicly available bicycle count data within the City of Melbourne - where only 141 of 15,933 road segments have labeled counts (resulting in 99% count data sparsity). Our experiments show that BikeVAE-GNN outperforms machine learning and baseline GNN models, achieving a mean absolute error (MAE) of 30.82 bicycles per day, accuracy of 99% and F1-score of 0.99. Ablation studies further validate the effective role of Hybrid-GNN and VAE components. Our research advances bicycling volume estimation in sparse networks using novel and state-of-the-art approaches, providing insights for sustainable bicycling infrastructures.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

自行车流量估算 稀疏网络 混合图神经网络 变分自编码器 交通规划
相关文章