cs.AI updates on arXiv.org 07月29日 12:21
Beyond 9-to-5: A Generative Model for Augmenting Mobility Data of Underrepresented Shift Workers
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文针对轮班工在传统交通调查和规划中的代表性不足问题,提出一种基于Transformer的模型,通过分析GPS轨迹数据,生成符合轮班工行为模式的完整活动模式,为城市规划提供数据支持。

arXiv:2507.19510v1 Announce Type: cross Abstract: This paper addresses a critical gap in urban mobility modeling by focusing on shift workers, a population segment comprising 15-20% of the workforce in industrialized societies yet systematically underrepresented in traditional transportation surveys and planning. This underrepresentation is revealed in this study by a comparative analysis of GPS and survey data, highlighting stark differences between the bimodal temporal patterns of shift workers and the conventional 9-to-5 schedules recorded in surveys. To address this bias, we introduce a novel transformer-based approach that leverages fragmented GPS trajectory data to generate complete, behaviorally valid activity patterns for individuals working non-standard hours. Our method employs periodaware temporal embeddings and a transition-focused loss function specifically designed to capture the unique activity rhythms of shift workers and mitigate the inherent biases in conventional transportation datasets. Evaluation shows that the generated data achieves remarkable distributional alignment with GPS data from Los Angeles County (Average JSD < 0.02 for all evaluation metrics). By transforming incomplete GPS traces into complete, representative activity patterns, our approach provides transportation planners with a powerful data augmentation tool to fill critical gaps in understanding the 24/7 mobility needs of urban populations, enabling precise and inclusive transportation planning.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

轮班工 交通规划 Transformer模型 GPS数据 活动模式
相关文章