cs.AI updates on arXiv.org 07月29日 12:21
Prostate Cancer Classification Using Multimodal Feature Fusion and Explainable AI
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

提出结合BERT和Random Forest的AI系统,在PLCO-NIH数据集上实现98%准确率和99% AUC,为医院提供高性能、计算效率高且可解释的前列腺癌诊断工具。

arXiv:2507.20714v1 Announce Type: cross Abstract: Prostate cancer, the second most prevalent male malignancy, requires advanced diagnostic tools. We propose an explainable AI system combining BERT (for textual clinical notes) and Random Forest (for numerical lab data) through a novel multimodal fusion strategy, achieving superior classification performance on PLCO-NIH dataset (98% accuracy, 99% AUC). While multimodal fusion is established, our work demonstrates that a simple yet interpretable BERT+RF pipeline delivers clinically significant improvements - particularly for intermediate cancer stages (Class 2/3 recall: 0.900 combined vs 0.824 numerical/0.725 textual). SHAP analysis provides transparent feature importance rankings, while ablation studies prove textual features' complementary value. This accessible approach offers hospitals a balance of high performance (F1=89%), computational efficiency, and clinical interpretability - addressing critical needs in prostate cancer diagnostics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

前列腺癌 AI诊断 BERT Random Forest 多模态融合
相关文章