cs.AI updates on arXiv.org 07月28日 12:42
LOTUS: A Leaderboard for Detailed Image Captioning from Quality to Societal Bias and User Preferences
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了一种名为LOTUS的排行榜,旨在评估详细图像描述的质量、风险和社会偏见,并通过适应不同用户偏好进行偏好导向评估,揭示模型在不同标准下的表现差异。

arXiv:2507.19362v1 Announce Type: cross Abstract: Large Vision-Language Models (LVLMs) have transformed image captioning, shifting from concise captions to detailed descriptions. We introduce LOTUS, a leaderboard for evaluating detailed captions, addressing three main gaps in existing evaluations: lack of standardized criteria, bias-aware assessments, and user preference considerations. LOTUS comprehensively evaluates various aspects, including caption quality (e.g., alignment, descriptiveness), risks (\eg, hallucination), and societal biases (e.g., gender bias) while enabling preference-oriented evaluations by tailoring criteria to diverse user preferences. Our analysis of recent LVLMs reveals no single model excels across all criteria, while correlations emerge between caption detail and bias risks. Preference-oriented evaluations demonstrate that optimal model selection depends on user priorities.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

图像描述 评估标准 用户偏好 社会偏见 大型视觉语言模型
相关文章