cs.AI updates on arXiv.org 07月28日 12:42
WiSE-OD: Benchmarking Robustness in Infrared Object Detection
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章介绍了一种解决红外图像检测难题的新方法,提出LLVIP-C和FLIR-C跨模态ood基准,以及WiSE-OD权重空间集成方法,旨在提升模型鲁棒性和准确度。

arXiv:2507.18925v1 Announce Type: cross Abstract: Object detection (OD) in infrared (IR) imagery is critical for low-light and nighttime applications. However, the scarcity of large-scale IR datasets forces models to rely on weights pre-trained on RGB images. While fine-tuning on IR improves accuracy, it often compromises robustness under distribution shifts due to the inherent modality gap between RGB and IR. To address this, we introduce LLVIP-C and FLIR-C, two cross-modality out-of-distribution (OOD) benchmarks built by applying corruption to standard IR datasets. Additionally, to fully leverage the complementary knowledge from RGB and infrared trained models, we propose WiSE-OD, a weight-space ensembling method with two variants: WiSE-OD${ZS}$, which combines RGB zero-shot and IR fine-tuned weights, and WiSE-OD${LP}$, which blends zero-shot and linear probing. Evaluated across three RGB-pretrained detectors and two robust baselines, WiSE-OD improves both cross-modality and corruption robustness without any additional training or inference cost.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

红外图像检测 LLVIP-C FLIR-C WiSE-OD 跨模态
相关文章