cs.AI updates on arXiv.org 07月28日 12:42
PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为PrismRAG的RAG问答模型微调框架,通过引入干扰识别和推理习惯,有效提升了问答的准确性,在12个公开数据集上平均提升了5.4%。

arXiv:2507.18857v1 Announce Type: cross Abstract: Retrieval-augmented generation (RAG) often falls short when retrieved context includes confusing semi-relevant passages, or when answering questions require deep contextual understanding and reasoning. We propose an efficient fine-tuning framework, called PrismRAG, that (i) trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages, and (ii) instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions. Evaluated across 12 open-book RAG QA benchmarks spanning diverse application domains and scenarios, PrismRAG improves average factuality by 5.4%, outperforming state-of-the-art solutions.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

RAG问答 模型微调 PrismRAG
相关文章