cs.AI updates on arXiv.org 07月25日 12:28
Multimodal Behavioral Patterns Analysis with Eye-Tracking and LLM-Based Reasoning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种多模态人机协作框架,通过多阶段管道、专家-模型协同评分模块和混合异常检测模块,提升眼动信号中的认知模式提取,应用于认知建模、自适应学习等领域。

arXiv:2507.18252v1 Announce Type: cross Abstract: Eye-tracking data reveals valuable insights into users' cognitive states but is difficult to analyze due to its structured, non-linguistic nature. While large language models (LLMs) excel at reasoning over text, they struggle with temporal and numerical data. This paper presents a multimodal human-AI collaborative framework designed to enhance cognitive pattern extraction from eye-tracking signals. The framework includes: (1) a multi-stage pipeline using horizontal and vertical segmentation alongside LLM reasoning to uncover latent gaze patterns; (2) an Expert-Model Co-Scoring Module that integrates expert judgment with LLM output to generate trust scores for behavioral interpretations; and (3) a hybrid anomaly detection module combining LSTM-based temporal modeling with LLM-driven semantic analysis. Our results across several LLMs and prompt strategies show improvements in consistency, interpretability, and performance, with up to 50% accuracy in difficulty prediction tasks. This approach offers a scalable, interpretable solution for cognitive modeling and has broad potential in adaptive learning, human-computer interaction, and educational analytics.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

眼动分析 认知模式 人机协作 多模态 认知建模
相关文章