cs.AI updates on arXiv.org 07月25日 12:28
Synthetic Data Generation for Phrase Break Prediction with Large Language Model
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨利用大型语言模型(LLM)生成合成短语断句标注,以减轻手动标注和语音相关任务的挑战,并通过与传统标注对比,评估其在多语言环境下的有效性。

arXiv:2507.18044v1 Announce Type: cross Abstract: Current approaches to phrase break prediction address crucial prosodic aspects of text-to-speech systems but heavily rely on vast human annotations from audio or text, incurring significant manual effort and cost. Inherent variability in the speech domain, driven by phonetic factors, further complicates acquiring consistent, high-quality data. Recently, large language models (LLMs) have shown success in addressing data challenges in NLP by generating tailored synthetic data while reducing manual annotation needs. Motivated by this, we explore leveraging LLM to generate synthetic phrase break annotations, addressing the challenges of both manual annotation and speech-related tasks by comparing with traditional annotations and assessing effectiveness across multiple languages. Our findings suggest that LLM-based synthetic data generation effectively mitigates data challenges in phrase break prediction and highlights the potential of LLMs as a viable solution for the speech domain.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 短语断句预测 语音处理 数据生成 多语言
相关文章