cs.AI updates on arXiv.org 07月25日 12:28
Multimodal Fine-grained Reasoning for Post Quality Evaluation
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

针对现有帖子质量评估的局限性,提出一种多模态细粒度话题-帖子关系推理框架,通过模拟人类认知过程,实现帖子质量评估的优化。

arXiv:2507.17934v1 Announce Type: cross Abstract: Accurately assessing post quality requires complex relational reasoning to capture nuanced topic-post relationships. However, existing studies face three major limitations: (1) treating the task as unimodal categorization, which fails to leverage multimodal cues and fine-grained quality distinctions; (2) introducing noise during deep multimodal fusion, leading to misleading signals; and (3) lacking the ability to capture complex semantic relationships like relevance and comprehensiveness. To address these issues, we propose the Multimodal Fine-grained Topic-post Relational Reasoning (MFTRR) framework, which mimics human cognitive processes. MFTRR reframes post-quality assessment as a ranking task and incorporates multimodal data to better capture quality variations. It consists of two key modules: (1) the Local-Global Semantic Correlation Reasoning Module, which models fine-grained semantic interactions between posts and topics at both local and global levels, enhanced by a maximum information fusion mechanism to suppress noise; and (2) the Multi-Level Evidential Relational Reasoning Module, which explores macro- and micro-level relational cues to strengthen evidence-based reasoning. We evaluate MFTRR on three newly constructed multimodal topic-post datasets and the public Lazada-Home dataset. Experimental results demonstrate that MFTRR significantly outperforms state-of-the-art baselines, achieving up to 9.52% NDCG@3 improvement over the best unimodal method on the Art History dataset.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

帖子质量评估 多模态推理 关系推理
相关文章