cs.AI updates on arXiv.org 07月25日 12:28
SV3.3B: A Sports Video Understanding Model for Action Recognition
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为SV3.3B的运动视频分析模型,通过结合时间运动差异采样和自监督学习,实现了对运动动作的精细分析,显著提高了信息密度、动作复杂度和测量精度。

arXiv:2507.17844v1 Announce Type: cross Abstract: This paper addresses the challenge of automated sports video analysis, which has traditionally been limited by computationally intensive models requiring server-side processing and lacking fine-grained understanding of athletic movements. Current approaches struggle to capture the nuanced biomechanical transitions essential for meaningful sports analysis, often missing critical phases like preparation, execution, and follow-through that occur within seconds. To address these limitations, we introduce SV3.3B, a lightweight 3.3B parameter video understanding model that combines novel temporal motion difference sampling with self-supervised learning for efficient on-device deployment. Our approach employs a DWT-VGG16-LDA based keyframe extraction mechanism that intelligently identifies the 16 most representative frames from sports sequences, followed by a V-DWT-JEPA2 encoder pretrained through mask-denoising objectives and an LLM decoder fine-tuned for sports action description generation. Evaluated on a subset of the NSVA basketball dataset, SV3.3B achieves superior performance across both traditional text generation metrics and sports-specific evaluation criteria, outperforming larger closed-source models including GPT-4o variants while maintaining significantly lower computational requirements. Our model demonstrates exceptional capability in generating technically detailed and analytically rich sports descriptions, achieving 29.2% improvement over GPT-4o in ground truth validation metrics, with substantial improvements in information density, action complexity, and measurement precision metrics essential for comprehensive athletic analysis. Model Available at https://huggingface.co/sportsvision/SV3.3B.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

运动视频分析 SV3.3B模型 自监督学习
相关文章