cs.AI updates on arXiv.org 07月25日 12:28
Exploring Communication Strategies for Collaborative LLM Agents in Mathematical Problem-Solving
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文探讨了不同通信策略对大型语言模型在教育场景中问题解决能力的影响,通过实验验证了双代理模型在数学问题解决中的优越性,突出了同伴协作模式在提高准确率方面的优势。

arXiv:2507.17753v1 Announce Type: cross Abstract: Large Language Model (LLM) agents are increasingly utilized in AI-aided education to support tutoring and learning. Effective communication strategies among LLM agents improve collaborative problem-solving efficiency and facilitate cost-effective adoption in education. However, little research has systematically evaluated the impact of different communication strategies on agents' problem-solving. Our study examines four communication modes, \textit{teacher-student interaction}, \textit{peer-to-peer collaboration}, \textit{reciprocal peer teaching}, and \textit{critical debate}, in a dual-agent, chat-based mathematical problem-solving environment using the OpenAI GPT-4o model. Evaluated on the MATH dataset, our results show that dual-agent setups outperform single agents, with \textit{peer-to-peer collaboration} achieving the highest accuracy. Dialogue acts like statements, acknowledgment, and hints play a key role in collaborative problem-solving. While multi-agent frameworks enhance computational tasks, effective communication strategies are essential for tackling complex problems in AI education.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM教育应用 通信策略 问题解决 双代理模型 同伴协作
相关文章