cs.AI updates on arXiv.org 07月24日 13:31
ORANSight-2.0: Foundational LLMs for O-RAN
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文介绍了ORANSight-2.0,一个针对O-RAN开发的专用LLM框架,旨在解决现有通用LLM在O-RAN领域的局限性。通过融合多个开源LLM框架,ORANSight-2.0在O-RAN特定任务上提高了性能,并引入了RANSTRUCT框架进行指令调整。

arXiv:2503.05200v2 Announce Type: replace-cross Abstract: Despite the transformative impact of Large Language Models (LLMs) across critical domains such as healthcare, customer service, and business marketing, their integration into Open Radio Access Networks (O-RAN) remains limited. This gap is primarily due to the absence of domain-specific foundational models, with existing solutions often relying on general-purpose LLMs that fail to address the unique challenges and technical intricacies of O-RAN. To bridge this gap, we introduce ORANSight-2.0 (O-RAN Insights), a pioneering initiative to develop specialized foundational LLMs tailored for O-RAN. Built on 18 models spanning five open-source LLM frameworks -- Mistral, Qwen, Llama, Phi, and Gemma -- ORANSight-2.0 fine-tunes models ranging from 1B to 70B parameters, significantly reducing reliance on proprietary, closed-source models while enhancing performance in O-RAN-specific tasks. At the core of ORANSight-2.0 is RANSTRUCT, a novel Retrieval-Augmented Generation (RAG)-based instruction-tuning framework that employs two LLM agents -- a Mistral-based Question Generator and a Qwen-based Answer Generator -- to create high-quality instruction-tuning datasets. The generated dataset is then used to fine-tune the 18 pre-trained open-source LLMs via QLoRA. To evaluate ORANSight-2.0, we introduce srsRANBench, a novel benchmark designed for code generation and codebase understanding in the context of srsRAN, a widely used 5G O-RAN stack.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

ORANSight-2.0 LLM框架 O-RAN 指令调整 开源LLM
相关文章