cs.AI updates on arXiv.org 07月24日 13:31
Multi-Level Explanations for Generative Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

文章提出了一种名为MExGen的多级解释技术,用于为生成式语言模型提供上下文相关的文本生成解释。该方法通过量化上下文部分对模型输出的影响来提供更可靠的解释,并在自动和人工评估中优于现有方法。

arXiv:2403.14459v2 Announce Type: replace-cross Abstract: Despite the increasing use of large language models (LLMs) for context-grounded tasks like summarization and question-answering, understanding what makes an LLM produce a certain response is challenging. We propose Multi-Level Explanations for Generative Language Models (MExGen), a technique to provide explanations for context-grounded text generation. MExGen assigns scores to parts of the context to quantify their influence on the model's output. It extends attribution methods like LIME and SHAP to LLMs used in context-grounded tasks where (1) inference cost is high, (2) input text is long, and (3) the output is text. We conduct a systematic evaluation, both automated and human, of perturbation-based attribution methods for summarization and question answering. The results show that our framework can provide more faithful explanations of generated output than available alternatives, including LLM self-explanations. We open-source code for MExGen as part of the ICX360 toolkit: https://github$.$com/IBM/ICX360.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 多级解释 文本生成 MExGen
相关文章