cs.AI updates on arXiv.org 07月24日 13:31
The Pluralistic Moral Gap: Understanding Judgment and Value Differences between Humans and Large Language Models
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出道德困境数据集,对比LLM与人类道德判断的分布,发现两者存在差异,并提出动态道德分析模型以改善这一差距。

arXiv:2507.17216v1 Announce Type: cross Abstract: People increasingly rely on Large Language Models (LLMs) for moral advice, which may influence humans' decisions. Yet, little is known about how closely LLMs align with human moral judgments. To address this, we introduce the Moral Dilemma Dataset, a benchmark of 1,618 real-world moral dilemmas paired with a distribution of human moral judgments consisting of a binary evaluation and a free-text rationale. We treat this problem as a pluralistic distributional alignment task, comparing the distributions of LLM and human judgments across dilemmas. We find that models reproduce human judgments only under high consensus; alignment deteriorates sharply when human disagreement increases. In parallel, using a 60-value taxonomy built from 3,783 value expressions extracted from rationales, we show that LLMs rely on a narrower set of moral values than humans. These findings reveal a pluralistic moral gap: a mismatch in both the distribution and diversity of values expressed. To close this gap, we introduce Dynamic Moral Profiling (DMP), a Dirichlet-based sampling method that conditions model outputs on human-derived value profiles. DMP improves alignment by 64.3% and enhances value diversity, offering a step toward more pluralistic and human-aligned moral guidance from LLMs.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

LLM 道德判断 数据集 动态道德分析
相关文章