cs.AI updates on arXiv.org 07月24日 13:31
Causal Graph Fuzzy LLMs: A First Introduction and Applications in Time Series Forecasting
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出一种名为CGF-LLM的新型LLM框架,融合GPT-2、模糊时间序列和因果图预测多变量时间序列,实现时间序列的语义理解和结构洞察,有效预测时间序列动态。

arXiv:2507.17016v1 Announce Type: cross Abstract: In recent years, the application of Large Language Models (LLMs) to time series forecasting (TSF) has garnered significant attention among researchers. This study presents a new frame of LLMs named CGF-LLM using GPT-2 combined with fuzzy time series (FTS) and causal graph to predict multivariate time series, marking the first such architecture in the literature. The key objective is to convert numerical time series into interpretable forms through the parallel application of fuzzification and causal analysis, enabling both semantic understanding and structural insight as input for the pretrained GPT-2 model. The resulting textual representation offers a more interpretable view of the complex dynamics underlying the original time series. The reported results confirm the effectiveness of our proposed LLM-based time series forecasting model, as demonstrated across four different multivariate time series datasets. This initiative paves promising future directions in the domain of TSF using LLMs based on FTS.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

CGF-LLM 时间序列预测 LLM 模糊时间序列 因果图
相关文章