cs.AI updates on arXiv.org 07月24日 13:31
Sparser2Sparse: Single-shot Sparser-to-Sparse Learning for Spatial Transcriptomics Imputation with Natural Image Co-learning
index_new5.html
../../../zaker_core/zaker_tpl_static/wap/tpl_guoji1.html

 

本文提出了一种名为Single-shot Sparser-to-Sparse (S2S-ST)的ST数据插补新框架,通过稀疏样本和自然图像共训练,实现高精度空间转录组学数据重建,有效降低成本,促进其在生物医学研究及临床应用中的广泛使用。

arXiv:2507.16886v1 Announce Type: cross Abstract: Spatial transcriptomics (ST) has revolutionized biomedical research by enabling high resolution gene expression profiling within tissues. However, the high cost and scarcity of high resolution ST data remain significant challenges. We present Single-shot Sparser-to-Sparse (S2S-ST), a novel framework for accurate ST imputation that requires only a single and low-cost sparsely sampled ST dataset alongside widely available natural images for co-training. Our approach integrates three key innovations: (1) a sparser-to-sparse self-supervised learning strategy that leverages intrinsic spatial patterns in ST data, (2) cross-domain co-learning with natural images to enhance feature representation, and (3) a Cascaded Data Consistent Imputation Network (CDCIN) that iteratively refines predictions while preserving sampled gene data fidelity. Extensive experiments on diverse tissue types, including breast cancer, liver, and lymphoid tissue, demonstrate that our method outperforms state-of-the-art approaches in imputation accuracy. By enabling robust ST reconstruction from sparse inputs, our framework significantly reduces reliance on costly high resolution data, facilitating potential broader adoption in biomedical research and clinical applications.

Fish AI Reader

Fish AI Reader

AI辅助创作,多种专业模板,深度分析,高质量内容生成。从观点提取到深度思考,FishAI为您提供全方位的创作支持。新版本引入自定义参数,让您的创作更加个性化和精准。

FishAI

FishAI

鱼阅,AI 时代的下一个智能信息助手,助你摆脱信息焦虑

联系邮箱 441953276@qq.com

相关标签

空间转录组学 数据插补 自然图像
相关文章